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Abstract: The demand for aquafeed is expected to increase in the coming years and new ingredients 

will be needed to compensate for the low fish meal and oil availability. Microalgae represent a 

promising matrix for the future aquafeed formulation, however, the high production cost hinders 

its application. The use of microalgae from biorefinery would reduce the disposal costs for 

microalgae production. The present study aimed to (i) verify the growth of microalgae on digestate 

coming from pig farming and (ii) evaluate their potential valorization as dietary ingredient in 

aquafeed according to a Circular Bioeconomy approach. For these purposes, a microalgae biomass 

was produced on an outdoor raceway reactor supplied with digestate and used for partial 

replacement (10% of the diet) in aquafeed for Siberian sturgeon fingerlings (Acipenser baerii). The 

results obtained confirm the feasibility for growing microalgae on digestate with satisfactory 

productivity (6.2 gDM m−2 d−1), nutrient removal efficiency and Chemical Oxygen Demand 

reduction; moreover, the feeding trial carried out showed similar results between experimental and 

control groups (p > 0.05), in term of growth performance, somatic indices, fillet nutritional 

composition and intestinal functionality, to indicate that microalgae from biorefinery could be used 

as protein source in Siberian sturgeon aquafeed. 
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1. Introduction 

According to data reported by FAO [1] aquaculture supplies about half of the fish intended for 

human consumption and the trend is increasing significantly in the coming decades.  

These data are in contrast with the significant reduction of fish from fisheries, due to an excessive 

depletion of wild fish stocks. Consequently, the demand for aquafeed has grown exponentially in the 

last decade and a further increase is expected in coming years [2]. Fish meal (FM) and fish oil (FO) 

are the raw ingredients commonly used to prepare feed for carnivorous fish species, due to their 

excellent nutritional properties such as high-quality protein content, long chain omega-3 
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polyunsaturated fatty acids (LC-PUFA) and high digestibility and palatability [3]. However, there 

are several limits to their future use, since high quality FM and FO derive from wild fish of which 

there is a growing demand even from emerging economies. Thus, the availability and consequently 

the price of these ingredients is unstable and growing substantially [4]. 

Therefore, the environmental, ethical and economic unsustainability, makes the future use of 

fish meal and oil in the aquafeed uncertain [3,5]. In order to face this problem, in the last decades the 

interest of researchers and aquafeed companies has focused on testing the feasibility of including into 

the feed novel ingredients of vegetable origin as a partial replacement of the protein and lipid sources 

of marine animal origin [5]. However, these ingredients have various nutritional disadvantages, 

including an unbalanced amino acid composition and the presence of anti-nutritional factors that can 

result in poor digestibility and palatability of the feed. Moreover, the vegetable resources demanded 

by the food and feed market is expected to rise, thus limiting their availability for aquaculture. 

Among the potential novel ingredients in aquaculture, microalgal biomasses is a promising matrix 

for aquafeed production [6,7]. Microalgae are renowned for their balanced biochemical composition, 

high nutritional value with an interesting content in proteins, long-chain polyunsaturated fatty acids, 

vitamins and minerals [8] that are suitable to support the nutritional needs of fish [6]. Moreover, the 

presence of bioactive molecules, such as carotenoids, showed nutraceutical and immunostimulant 

properties, highlighted in various studies in different fish species [9–11]. To date, high production 

cost and limited availability are the main limiting factors for the use of algal biomass in aquaculture. 

In this context, a circular bioeconomy approach for the conversion of sustainable resources into 

bio-based products and bioenergy, including food and feed, using innovative and efficient industrial 

biotechnologies, is an opportunity to improve ethic and environmental sustainability and to optimize 

production processes and lower costs.  

Recent research shows a good ability of different microalgal species to grow on complex waste 

stream of organic origin (digestate, wastewater, etc.) performing the remediation of nutrient 

pollutants (P, N, etc.), while producing biomass [12,13]. Therefore, the development of integrated 

biorefineries based on the use of microalgal biotechnology would allow the recovery of some agro-

industrial by-products reducing disposal costs.  

The microalgae biomass produced from biorefineries could be a valuable source of proteins, 

lipids and used as bioactive compounds for aquafeed but, at present, very few studies have been 

conducted on this topic. In particular, few studies conducted on Acipenserides showed that feed 

supplemented with Arthrospira sp. and vegetable oils has proved to be a valid alternative to fish oil 

and fish meal, both in white (A. transmontanus) and Siberian (A. baerii) sturgeon diet [14].  

The research activities carried out in the current study aimed to assess the partial replacement 

of FM and FO in the aquafeed with a blend of two microalgae, Scenedesmus sp. and Chroococcus sp. 

deriving from an integrated biorefinery. The quality of the biomass and the experimental diet was 

assessed by a detailed biochemical and microbiological characterization and by a feeding trial on 

Siberian sturgeon fingerlings (Acipenser baerii). 

2. Materials and Methods  

2.1. Microalgae Biomass Production  

The experimentation lasted 200 days and was hosted at a farm breeding approximately 20,000 

pigs located in Northern Italy. At the farm, a mixture of wastes from farming and agro-practices were 

processed in an anaerobic digester to produce bioenergy via anaerobic digestion. The output of the 

biogas plant, namely the digestate, was sent to a centrifuge to produce a clarified liquid known as 

‘centrate’; the centrate showed a variable composition, but a generally high pollution load (630 ± 330 

mg N-NH4+ L−1, 13 ± 6 mg P-PO43− L−1, 1090 ± 380 mg COD L−1), a turbidity of 190 ± 170 FAU and a 

conductivity of 9.2 ± 3.9 mS cm−1. The centrate was used to feed microalgae/bacteria grown in a pilot-

scale raceway pond (RW). The RW consisted of a raceway with a surface of approximately 3.8 m2 and 

volume of 0.50–0.88 m3, depending on the water depth. The pond was mixed by a paddlewheel and 

featured a sump for pH-controlled CO2 dosage; more details about the experimental set-up are 
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available in Pizzera et al. [13]. Biomass harvesting was performed with a pilot-scale centrifuge (10,000 

g from Filtermaxx, USA), and the liquid fraction was partially or totally recirculated to the RW. 

Therefore, the hydraulic retention time (HRT) and the biomass retention time (SRT) were uncoupled 

(on average HRT = 60 d, SRT = 35 d). The harvested biomass was air dried at 32 °C.  

During the first 7 weeks of start-up, the RW was fed on diluted centrate to favor microalgae 

adaptation; afterwards, the plant was operated for 150 days by feeding undiluted centrate. The pilot 

was monitored in order to assess the bioremediation performances as for the organic matter and 

nutrient (N and P) content. Moreover, the concentration of dry matter (DM) and the cell counts in the 

algal suspension were assessed to monitor the density and composition of the microbial community. 

Details on analytical methods and data processing procedures are reported elsewhere [13]. The 

climate was typical of Northern Italy (average daily temperature from 3 to 30 °C, daily precipitation 

from 0 to 59 mm). High evaporation occurred (9 ± 7 L∙d−1) with respect to incoming flow (from 0 to 

49 L∙d−1). 

2.2. Feed Formulation and Production. 

Two experimental diets were formulated to be isoproteic (51.0% DM) and isolipidic (14.0% DM). 

The control diet (CT) mimics the ingredient composition of the commercial microalgae-free diets used 

for feeding sturgeon fingerlings. The diet SC 10 was formulated including 10% (w/w) of a blend 

Scenedesmus-Chroococcus, partially replacing FM. The composition of ingredients of the diets is shown 

in Table 1. Formula was also established on the base of the nutritional composition the dried algal 

biomass (mainly consisting of a blend of Scenedesmus-Chroococcus) (Table 2). 

Table 1. Ingredient composition of experimental diets used in the feeding trial. 

Ingredients (g kg−1 Dry Matter, DM)  CT SC 10 

Fish meal 1 274.0 191.0 

Soybean protein concentrate 2 250.0 250.0 

Gluten meal 3 150.0 150.0 

Dried Scenedesmus-Chroococcus 0 100.0 

Attractant premix 4 100.0 100.0 

Fish solubles CPSP 90 5 50.0 50.0 

Fish oil 50.0 53.4 

Wheat meal 6 40.5 19.5 

Soybean oil 27.0 27.6 

Soybean lecithin 7 10.0 10.0 

Vitamin and mineral premix 8 10.0 10.0 

Guar gum 10.0 10.0 

Alginate 10.0 10.0 

Choline chloride 7 5.0 5.0 

Betaine 5.0 5.0 

Lysine 5.0 5.0 

Methionine 2.5 2.5 

Stay C Roche 0.2% 1.0 1.0 

1 (protein: 69.4%; lipids: 12.3%), Norsildemel (Bergen, Noruega); 2 (protein: 51.5%; lipids: 8.0%); 3 

(protein: 76.0%; lipids: 1.9%); 4 (50% squid meal, 50% krill meal); 5 (protein: 84.1%; lipids: 8.8%), 

Sopropeche (France); 6 (protein: 12.0%; lipids: 2.0%); 7 SigmaAldrich (Madrid, Spain); 8 Vitamin and 

mineral premix. 

For the feed production, the dry microalgal biomass was provided to the Ceimar-University of 

Almería (Service of Experimental Diets), where all the ingredients were ground and mixed in a 
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vertical spiral-shaped mixer (Sammic BM-10, capacity 10-L, Sammic, Azpeitia, Spain) and 

subsequently supplemented with fish oil and diluted choline. The ingredients were mixed for 15 min, 

then integrated with water to obtain a homogeneous dough that was subjected to a cold extrusion 

process (Miltenz 51SP, JSConwell Ltd. New Zealand) for making pellets with 1 mm diameter and 1.5 

mm length. A temperature of about 60 °C was applied for the extrusion process for preserving the 

potential functional properties of the microalgae. The pellets were dried in a chamber at 25 °C (Air-

Frio, Almería, Spain). After 24 h, the feed was stored, in plastic bags under vacuum packaging 

conditions, at −20 °C until use. 

2.3. Fish, Feeding Trial and Sampling 

The feeding trial was carried out at the experimental facilities of the Italian Experimental 

Institute Lazzaro Spallanzani (Rivolta d’Adda, Italy). Six groups of Siberian sturgeon (A. baerii) 

fingerlings (mean body weight 12.0 ± 0.1 g), each consisting of 16 individuals, were randomly 

sampled from a single group of 96 fish and kept in six 120 L fiberglass tanks in RAS system 

(Recirculating Aquaculture System, daily water exchange, 2%, with mechanically filtered and UV-

treated water). 

Water parameters were monitored daily and kept constant and optimal for this species 

(temperature 18.9 ± 0.6 °C, dissolved oxygen 9.6 ± 1.2 mg L−1, pH 8.1 ± 0.1, NH4-N < 0.06 mg L−1, NO2-

N < 0.2 mg L−1). The photoperiod used was 12 h of artificial light and 12 h of darkness. After 15 days 

of acclimatization, dietary treatments were randomly assigned in triplicate to the 6 groups. Fish were 

fed for 40 days with experimental diets by hand, six days per week in two daily meals (9:00 a.m. and 

5:00 p.m.) with a feed ratio equal to 3% of body weight. 

At days 15, 30 and at the end of the growth trial (40 days), fish were group-weighed after a 24 h 

fasting period, under moderate anesthesia (MS222, 50 mg L−1) to assess zootechnical parameters.  

Growth performance and nutrient utilization were estimated using the following parameters: 

survival rate (SR, %), initial body weight (IBW, g), final body weight (FBW, g), total feed intake (FI), 

specific growth rate (SGR) and feed conversion ratio (FCR) were computed as shown below: 

SGR (%): 100 × [(ln final body weight − ln initial body weight)/days] 

FCR: Total feed intake (g)/weight gain (g) 

Six fish per tank (18 fish per dietary treatment) were randomly selected, euthanized with a bath 

of tricaine (Pharmaq) at a lethal concentration, then dried on absorbent paper and subjected to 

individual biometric measurements (total length, body weight). The condition index was then 

calculated following Fulton’s K-index: 

K = (W/L3) × 100, where W is the weight and L is the total length of the fish. 

A pool of the respective skinned fillets from 3 fish per tank (9 fish per dietary treatment) was 

frozen and stored at −20 °C for proximate and fatty acid analysis. A pool of livers from the same fish 

was frozen and stored at −20 °C until superoxide dismutase (SOD) and catalase (CAT) activity were 

measured. In addition, 2 fish per tank (6 fish per dietary treatment) were sacrificed and dissected for 

intestinal tract sampling and subsequent enzymatic, TEM and SEM microscopy analysis.  

In this study, EU directive 2010/63/EU and the relative guidelines on the protection of animals 

used for scientific purposes were followed for fish manipulation. 

2.4. Chemical Analysis  

The dried microalgae biomass, experimental diets and fillet muscle tissue were analyzed for dry 

matter, crude protein, total lipids and ash according to AOAC methods [15], after grinding and 

homogenization.  

The Folch method [16] with a chloroform–methanol mixture (2:1, v/v), was used for the 

extraction and determination of total lipids. The preparation of fatty acid methyl esters (FAME) was 

performed according to Christie [17].  

Amino acids analysis was performed using 100 mg of sample, which was hydrolyzed in 10 mL 

of 6 N HCl under vacuum at 110 °C for 24 h. After hydrolyzation, the sample was filtered (using filter 

with pores of 0.45 μm), washed with 3 × 1 mL of 0.1 N HCl, evaporated to dryness under nitrogen at 
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40 °C, and the dry residue was redissolved in 2 mL of distilled water. The Graser et al. [18] method 

was used for amino acid determination. The HPLC consisted of a Perkin Elmer Series 200 pump, 

equipped with a Perkin Elmer Series 200 Autosampler and a Perkin Elmer Altus A-10 FL Detector.  

The gradient elution was used for the separation. Mobile phase A consisted of a 

methanol/acetonitrile solution in a 12:1 (v/v) ratio, mobile phase B was 23 mM sodium acetate pH 

5.95 [19]. After applying a linear gradient for 75 min at a flow rate of 1 mL min−1 from 0% to 53.5% B, 

an equilibration step was performed with 100% A for 20 min [20]. 

2.5. Microbiological Analysis 

A microbiological characterization of the dried algal biomass and the formulated experimental 

diets were carried out before their use in the feeding trial. Each sample (10 g) was homogenized in 90 

mL of sterile 0.1% peptone water solution (PWS, Oxoid™ Peptone Bacteriological, Thermo Fisher 

Diagnostics, Rodano, Italy) using the homogenizer Stomacher 400 circulator (VWR International, 

Milan, Italy). The homogenized samples were ten-fold diluted in PWS and plated by inclusion in agar 

media for specific bacterial counts, as follows: (i) total mesophilic aerobic bacteria on Plate Count 

Agar (Oxoid) for 72 h at 30 °C [21]; (ii) Enterobacteriaceae on Violet Red Bile Glucose agar (Oxoid) 

for 24 h at 37 °C [22]; Escherichia coli on ChromID Coli agar (Biomerieux, Bagno a Ripoli, Italy) for 24 

h at 44 °C [23]; Enterococci on Kanamycin Esculine Azide agar (Merck, Darmstadt, Germany) for 24–

48 h at 42 °C. Sulfite-reducing Clostridia spores were enumerated after heat treatment of each 

homogenized sample to 80 °C for 10 min. Sample dilutions were inoculated in TSC (Tryptose Sulfite 

Cycloserine agar, Merck) and incubated for 24–48 h at 37 °C under anaerobic conditions [24]. The 

presence of Clostridium perfringens spores was confirmed by testing typical colonies on TSC agar for 

acid phosphatase activity according to ISO standard method [25]. To detect acid phosphatase, a 

commercial kit was used according to manufacturer instructions (Acid phosphatase reagent TN1519, 

Sifin Diagnostics, Berlin, Germany). The presence/absence of Salmonella spp. in 25 g of each sample 

was determined according to ISO standard 6579-1 [26]. The microbiological determinations were 

carried out in duplicate. The bacterial count data were log-transformed, and results were expressed 

as means (log CFU g−1) ± standard deviations (SD). 

2.6. SOD, CAT Analysis 

Before performing enzymatic activity assays, an aliquot of sturgeon livers from the pool (about 

50–100 mg from each fish) was rinsed with a phosphate-buffered saline (PBS) solution, pH 7.4, to 

remove any red blood cells and clots. The tissue was then homogenized on ice in 10 mL g−1 tissue of 

cold buffer (50 mM potassium phosphate, pH 7.0, containing 1 mM EDTA for CAT assay and 20 mM 

HEPES, pH 7.2, 1 mM EGTA, 210 mM mannitol and 70 mM sucrose for SOD assay). Tissues 

homogenized with respective buffers were centrifuged at 10,000× g for 15 min, at 4 °C and the 

supernatant was stored at −80 °C until the assays were performed. Catalase Assay Kit (Item No. 

707002) and Superoxide Dismutase Assay Kit (Item No. 706002) were purchased from Cayman 

Chemical (Ann Arbor, Michigan). Absorbance was read using an Infinite® F500 (Tecan Trading AG, 

Switzerland) spectrometer. Each sample was tested in triplicate. 

The CAT measurement was based on the reaction of the enzyme CAT with methanol in the 

presence of an optimal concentration of H2O2. The formaldehyde produced by the oxidation step was 

measured colorimetrically using Purpald (4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole, 4-Amino-

5-hydrazino-1,2,4-triazole-3-thiol) as chromogen. The absorbance was read at 540 nm. CAT activity 

was expressed as the amount of enzyme that caused the formation of 1.0 nmol of formaldehyde 

(oxidation product) per min at 25 °C (nmol min−1 mL−1). Quantification was performed by a calibration 

curve, obtained by plotting the absorbance of a known standard as a function of the final 

formaldehyde concentration. 

For SOD determination, a tetrazolium salt was used as radical detector of superoxide radicals 

generated by xanthine oxidase and hypoxanthine. Absorbance of samples having undergone 

oxidation was read at 450 nm. Total SOD activity (cytosolic and mitochondrial) was expressed as unit 

of enzyme that exhibits 50% dismutation of the superoxide radical (U mL−1). Quantification was 
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performed plotting the SOD linearized standard rate, obtained dividing the absorbance of a known 

standard for the absorbance of samples, as a function of final SOD activity. 

2.7. Analysis of Digestive Enzyme Activities 

For the enzymatic activity determination, proximal and distal intestines from animals of each 

group were separately homogenized in ice-cold distilled water (1:2 w/v). Supernatants were obtained 

following centrifugation at 13,000× g during 12 min at 4 °C, and then stored at −20 °C until analysis. 

The activity of total alkaline proteases was determined at 280 nm according to Alarcón et al. [27], 

using buffered 5 g L−1 casein (50 mM Tris HCl pH 9.0). The amount of enzyme releasing 1 μg tyrosine 

min−1 was defined as one unit of activity (extinction coefficient of tyrosine 0.008 μg−1 mL−1 cm−1). The 

activities of trypsin and chymotrypsin were measured with 0.5 mM BAPNA (N-a-benzoyl-DL-

arginine-4-nitroanilide) following the methodology of Erlanger et al. [28] and 0.2 mM SAPNA (N-

succinyl-(Ala)2-Pro-Phe-P-nitroanilide) using the procedure described by DelMar et al. [29], 

respectively. The activity of leucine aminopeptidase was assayed using buffered 2 mM L-Leucine-p-

nitroanilide (pH 8.8) [30]. The alkaline phosphatase was quantified using buffered p-nitrophenyl 

phosphate (pH 9.5) [31]. One unit of trypsin, chymotrypsin and leucine aminopeptidase activity was 

established as the amount of enzyme that released 1 μmol p-nitroanilide min−1 (extinction coefficient 

8800 M cm−1 at 405 nm). In the case of alkaline phosphatase, a unit of activity was defined as the 

enzyme amount that releases 1 μg nitrophenyl min−1 (extinction coefficient 17,800 M cm−1 at 405 nm). 

The specific enzymatic activity was expressed as U g tissue−1. All the assays were performed in 

triplicate. In the case of total alkaline proteases, substrate-SDS-PAGE electrophoresis gels were 

performed for visualizing those enzymes. 

2.8. Electron Microscopy Study of the Fish Intestinal Mucosa 

Proximal and distal intestine samples for transmission electron microscopy (TEM) were treated 

for 4 h at 4 °C with buffered 2 g L−1 glutaraldehyde and 40 g L−1 formaldehyde (pH 7.5). Then, tissue 

sections were washed with PBS (three times for 20 min). After that, samples were treated with 20 g 

L−1 osmium tetroxide and were afterwards dehydrated in gradient ethanol solutions ranging from 

50% to 100% (v/v). Samples were embedded in ethanol 100% (v/v) and Epon resin (1:1) for 2 h under 

continuous shaking. Next, samples were included in Epon resin during 24 h at 60 °C. Ultra fine cuts 

were obtained and then placed on a 700 Å cooper mesh and stained with lead citrate and uranyl 

acetate. The samples were visualized using a transmission electron microscope (Zeiss 10 C at 100 Kv, 

Carl Zeiss, Barcelona, Spain). TEM micrographs were analyzed using UTHSCA ImageTool software 

for measuring microvilli length and microvilli diameter, and the number of microvilli over 1 μm2 

surface [32]. One hundred measurements of the proximal and distal intestine per dietary group were 

carried out. Total absorption surface per microvilli was determined according to Vizcaíno et al. [9]. 

Additional samples were obtained and processed for observation in a scanning electron microscopy 

(SEM) (HITACHI model S-3500, Hitachi High-Technologies Corporation, Japan) according to 

Vizcaíno et al. [9].  

2.9. Statistical Analysis  

Data of growth performance, biometric indices, proximate composition, fatty acids, antioxidant 

enzymes are expressed as mean ± standard deviation. Prior to statistical analysis, all the data were 

evaluated for normality distribution. Means were compared using the Student’s t-test, set for p < 0.05. 

All analyses were carried out using the SPSS-PC release 17.0 (SPSS Inc., Chicago, IL, USA). 
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3. Results and Discussion 

3.1. Microalgae Biomass Production  

Despite some suboptimal characteristics of the undiluted centrate (high ammonium 

concentration, high N/P ratio, high turbidity), the microalgae consortium grew stably and the algal 

biomass concentration was very high for this kind of reactor, being on average 1.2 ± 0.6 g DM L−1. 

This high concentration was also achieved thanks to the high evaporation, which led to a 

concentration effect. Average algal productivity was 6.2 ± 1.0 g DM∙m−2∙d−1 during the operation with 

undiluted centrate, which is coherent with results reported in published experimentations on similar 

systems [13,33,34]. As for the bioremediation performances, removal efficiencies were computed by 

comparing the influent and effluent loads for relevant pollutants (details on data processing can be 

found in Pizzera et al. [13]) and were on average 99.7 ± 0.7% for ammonium, 86 ± 15% for phosphorus, 

and 57 ± 15% for organic matter (assessed in terms of chemical oxygen demand, COD). These data 

demonstrate the algae/bacteria consortia were effective in reducing the pollution load in the centrate 

and could be applied to reduce the environmental impact of intensive farming, especially in those 

areas that are classified as sensitive to nitrate according to the European Nitrite Directive 

(91/676/CEE). The microalgal community was mixed and mainly made up of green microalgae 

belonging to the Chlorellaceae and Scenedesmaceae families, as well as of cyanobacteria of the 

Chroococcaceae family with total algal count varying within 0.5–9.0 106 cell mL−1. From July onward, 

branched green algae belonging to the Chaetophoraceae family became dominant (Stigeoclonium). 

The biomass used for this study was collected from the pilot plant with four samples from 22/06 to 

02/07/2018, therefore it was mainly composed of Scenedesmus sp. and Chroococcus sp. (Figure 1). 

 

Figure 1. Growth and evolution of the community composition of microalgae culture used for the 

elaboration of experimental diet. 

3.2. Microalgae Biomass Chemical and Microbiological Characterization 

The chemical composition and microbiological traits of the dried biomass of Scenedesmus and 

Chroococcus grown on digestate are shown in Tables 2 and 3, respectively. Microbial contamination is 
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an important issue when microalgae are produced in open-air systems [35], especially when a non-

sterile substrate is used. The freeze-dried biomass of microalgal community cultivated on digestate 

showed a total bacterial content of 5.98 log CFU g−1, with Enterobacteriaceae and E. coli at 2.73 and 

2.49 log CFU g−1, respectively. Sulfite-reducing Clostridia spores were found at level of about 4.03 log 

CFU g−1 and characteristic colonies were confirmed as C. perfringens by acid phosphatase test [36]; 

Salmonella spp. was not found in 25 g of dried biomass. 

Table 2. Proximate composition, amino acid (AA) and fatty acid profile of Scenedesmus–Chroococcus 

air dried biomass (data expressed on dry matter basis). 

Proximate Composition (g/100 g Microalgae)  Scenedesmus–Chroococcus Blend 

Water  10.1 

Crude protein  47.4 

Total lipids  9.6 

Carbohydrates 9.7 

Ash  6.8 

Essential AA (g/100 g Microalgae) Scenedesmus–Chroococcus Blend  

Arginine 6.00 

Histidine 2.18 

Isoleucine 2.27 

Leucine 1.55 

Lysine 3.42 

Methionine 1.46 

Phenylalanine 1.28 

Tyrosine 1.27 

Threonine 2.23 

Valine 1.17 

Non Essential AA (g/100 g Microalgae) Scenedesmus–Chroococcus Blend  

Alanine 0.76 

Aspartic acid 8.34 

Glutamic acid 5.60 

Glycine 0.88 

Serine 2.66 

Fatty Acid Composition (mg/100 g Fatty Acid) Scenedesmus–Chroococcus Blend  

14:0 0.69 

16:0 21.59 

16:1n−7 1.62 

17:0 3.96 

16:2n-4 0.48 

18:0 13.15 

18:1n-9 10.29 

18:1n-7 1.20 

18:2n-6 16.61 

18:3n-3 25.82 

18:4n-3 4.59 
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SFA 39.38 

MUFA 13.11 

PUFA 47.50 

n-3 30.41 

n-6 16.61 

n-3/n-6 1.83 

Abbreviations: SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids. 

Table 3. Microbial content of Scenedesmus–Chroococcus air dried biomass. 

Indicator Parameters Scenedesmus-Chroococcus Blend 

Total viable aerobic count (log CFU g−1) 5.98 ± 0.03 

Enterobacteriaceae (log CFU g−1) 2.73 ± 0.07 

E. coli (log CFU g−1) 2.49 ± 0.20 

Salmonella spp. (in 25 g) absent 

Sulfite-reducing Clostridia spores (log CFU g−1) 4.03 ± 0.02 * 

Mean values ± standard deviations. * presence of C. perfringens colonies confirmed by positive reaction 

to acid phosphatase assay. 

3.3. Chemical Composition and Microbiological Characterization of Experimental Diets 

The chemical composition of the diets is shown in Table 4. The dry matter, crude protein, total 

lipids, ash contents were similar between the diets, and adequate to fulfill the nutritional and energy 

requirements of Siberian sturgeon fingerlings.  

Regarding the fatty acid profile, overall, no differences were observed between experimental 

diets. The level of saturated fatty acids (SFA) ranged between 25.6% and 26.7%, respectively, in the 

control and microalgae-supplemented diets. Monounsaturated fatty acids (MUFA) were mainly 

represented by the oleic acid C18:1n-9, ranging between 30.7% (SC 10) and 31.6% (CT). 

Polyunsaturated fatty acids (PUFA), with values of 42.8% (CT) and 42.6% (SC 10), was the most 

abundant category of fatty acids, and linoleic acid (18:2n-6) with values of 20.4% (CT) and 20.9% (SC 

10) was mainly represented.  

Eicosapentaenoic acid (EPA) was present, ranging from 6.97 to 7.42% in both diets, while 

docosahexaenoic acid (DHA) ranged from 7.97 to 8.7% in the experimental and control diets, 

respectively. 

Table 4. Proximate composition and fatty acid profile of the experimental diets. 

Proximate Composition (g/100 g Feed on Dry Basis) CT SC 10 

Moisture 11.1 10.9 

Crude protein 51.5 51.6 

Crude lipid 14.0 14.3 

Ash 7.6 7.6 

Fatty Acid Composition (g/100 Fatty Acid) CT SC 10 

14:0 4.42 4.46 

15:0 0.38 0.40 

16:0 17.08 17.92 

16:1n−7 3.83 3.88 

17:0 0.28 0.40 
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16:2n-4 0.40 0.38 

16:3n-4 0.39 0.38 

18:0 3.19 3.22 

18:1n-9 15.97 15.99 

18:1n-7 2.41 2.39 

18:2n-6, LOA 20.42 20.92 

18:3n-3 2.39 2.90 

20:0 0.24 0.26 

18:4n-3 1.73 1.82 

20:1n-11 0.33 0.30 

20:1n-9 3.52 3.09 

20:4n-6, ARA 0.54 0.52 

22:1n-11 4.71 4.25 

22:1n-9 0.40 0.35 

20:5n-3, EPA 7.42 6.97 

24:1 0.48 0.45 

22:5n-3 0.75 0.75 

22:6n-3, DHA 8.74 7.97 

SFA 25.59 26.66 

MUFA 31.63 30.71 

PUFA 42.78 42.63 

n-3 21.04 20.42 

n-6 20.96 21.45 

n-3/n-6 1.00 0.95 

Abbreviations: LOA, linoleic acid; EPA, eicosapentaenoic acid; ARA, arachidonic acid; DHA, 

docosahexaenoic acid; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids. 

Microbiological traits of the test diets are shown in Table 5. Both the control and experimental 

diet showed a lower microbial load, probably due to the dilution of the experimental ingredient and 

to the heat treatment applied during the extrusion process. The total bacterial content was slightly 

higher in the experimental diet (4.36 vs. 3.69 log CFU g−1), while Enterobacteriaceae, E. coli and 

Salmonella spp. were not detected.  

A low number of sulphite-reducing Clostridia spores, including C. perfringens, were present only 

in the experimental diet, probably deriving from digestate. These microorganisms are obligate 

anaerobic bacteria, so they cannot survive in a microalgal culture, since they are rich in oxygen due 

to intense photosynthesis. The absence of Salmonella, considered the major hygienic risk for animal 

feed, ensures its safety [37]. The new fertilizing products regulation (UE n. 2019/1009) states that 

digestate, even coming from organic waste (except for sludge from civil wastewater), can be used for 

the production of fertilizers, if no Salmonella spp. is present in 25 g sample and E. coli is less than 1000 

CFU/g of fresh mass. 

Concerning microbiological feed quality, everything is demanded to voluntary quality standard, 

HACCP evaluation and the principles contained in the Codex Alimentarius (Regulation (EC) No 

183/2005 laying down requirements for feed hygiene). In general, the use of centrate as by-product 

stream for microalgal cultivation, does not seem to particularly affect the microbiological quality of 

experimental diet. 
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Table 5. Microbial content values in the experimental diets. 

Indicator Parameters CT SC 10 

Total viable aerobic count (log CFU g−1) 3.69 ± 0.21 4.36 ± 0.17 

Enterobacteriaceae (log CFU g−1) <2.00 <2.00 

E. coli (log CFU g−1) <2.00 <2.00 

Salmonella spp. (in 25 g) absent absent 

Sulfite-reducing Clostridia spores (log CFU g−1) <2.00 2.83 ± 0.03 * 

Mean values ± standard deviations. * presence of C. perfringens colonies confirmed by positive reaction 

to acid phosphatase assay. 

3.4. Growth Performance, Nutrient Utilization and Fillet Chemical Composition 

Both CT and SC 10 diets were palatable and accepted by fish. Mortality was 2% on average, and 

the dietary treatments did not affect any parameters analyzed. The growth of A. baerii fed on the 

experimental diet throughout the 40-day trial is shown in Figure 2.  

 

Figure 2. Time course variation of body weight of fish fed the different diets for 40 days. (n = 3, 16 fish 

per tank). 

At the end of feeding period, the Final Body Weight (FBW), as well as the other growth and 

nutrient utilization parameters (FI, SGR, FCR) in fish fed microalgae-supplemented feed, did not 

differ from the group fed with CT diet, and K-factor and somatic indices were also similar between 

dietary treatments (Table 6).  

The growth performance of Siberian sturgeon used in this trial showed similar results to other 

feeding trial with the same species used during the same growing phase.  

Yun et al. [38], in a trial with the total replacement of fish meal with plant blend meal, observed 

the growth of sturgeon from 39 g to 135–144 g in an eight-week trial, with a SGR ranging from 2.21 

to 2.33 according to the different diet tested, while Caimi et al. [39] used juvenile Siberian sturgeon 

weighting 24 g in a trial where they tested Hermetia illucens meal at two level of inclusion and a 

vegetable-based diet. After 118 days of trial, fish showed a final weight ranging from 141 to 159 g 

with a SGR of 1.58–1.59 according to the diet that they had received. 
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Table 6. Growth performance, nutrient utilization, and somatic indices of A. baerii fingerlings fed the 

test diets over 40 days. 

Growth Parameters CT SC 10 

IBW (g) 12.8 ± 0.2 13.0 ± 0.2 

FBW (g) 44.2 ± 1.7 43.5 ± 2 

FI 1(g) 346.2 ± 3.7 341.5 ± 1.5 

SGR 2 3.1 ± 0.05 3.0 ± 0.08 

FCR 3 0.69 ± 0.02 0.70 ± 0.05 

Survival (%) 100 ± 0.0 97.9 ± 4.4 

Somatic Indices CT  SC 10  

Total length (cm) 25.2 ± 1.8 23.9 ± 1.9 

Whole body weight (g) 38.6 ± 9.35 39.8 ± 8.6 

K-factor 0.30 ± 0.02 0.29 ± 0.03 

1 FI: Feed intake (g feed ingested).2 SGR:100 × [(ln final body weight − ln initial body weight)/days].3 

FCR: feed intake/weight gain. 

The inclusion of microalgae did not affect the fillet composition in terms of total protein, lipid 

and ash content in A. baerii fingerlings (Table 7). 

Concerning the fatty acid profile, the fillet composition mirrored the composition of the diets, 

with a predominance of PUFA followed by MUFA and SFA. Considering single fatty acids, the fatty 

acids present in higher amount were oleic acid, palmitic acid and linoleic acid, which were the same 

prevalent fatty acids found in the two diets tested. Sturgeon fed with SC 10 diet showed a lower SFA 

content (p < 0.05), partially due to a minor content of palmitic acid (16:0), even if the SC 10 diet was 

not the poorest regarding this fatty acid in comparison with the control diet. Other differences 

highlighted in Table 7 reflect the minimal differences in the fatty acid composition of the two diets.  

Table 7. Proximate composition and fatty acid profile of fillets of A. baerii fingerlings fed the test diets 

over 40 days. 

Proximate Composition (g/100 g Muscle on Wet Basis) CT SC 10  

Moisture 79.05 ± 1.73 79.34 ± 0.26  

Total protein  16.55 ± 1.10 16.63± 0.62  

Total lipids  3.48 ± 1.06 3.13 ± 0.45  

Ash 0.92 ± 0.11 0.90 ± 0.09  

Fatty Acid Composition (g/100 g Fatty Acids)     p 

14:0 3.37 ± 0.19 3.47 ± 0.11  

16:0 18.96 ± 0.28 18.08 ± 0.07 * 

16:1n−7 3.67 ± 0.17 4.00 ± 0.19  

18:0 3.35 ± 0.24 3.09 ± 0.29  

18:1n-9 cis 19.73 ± 0.37 19.99 ± 0.57  

18:1n−7 3.24 ± 0.10 3.23 ± 0.10  

18:2n-6 cis 9.12 17.04 ± 0.27 17.11 ± 0.37  

18:3n-6 0.39 ± 0.10 0.66 ± 0.10 * 

18:3n-3 1.64 ± 0.09 1.96 ± 0.09 * 

18:4n-3 0.90 ± 0.09 1.02 ± 0.09  

20:1n-11 1.18 ± 0.02 0.96 ± 0.02  

20:1n-9 3.53 ± 0.02 3.21 ± 0.08 * 
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20:3n-6 0.33 ± 0.02 0.38 ± 0.03  

20:4n-6 0.92 ± 0.11 0.95 ± 0.08  

22:1n-11 2.72 ± 0.14 2.39 ± 0.16 ** 

20:5n-3 5.40 ± 0.07 5.57 ± 0.07 * 

22:5n-3 1.66 ± 0.14 1.84 ± 0.07  

22:6n-3 11.99 ± 0.92 12.10 ± 0.53  

SFA 25.68 ± 0.22 24.63 ± 0.17 ** 

MUFA 34.06 ± 0.54 33.78 ± 0.49  

PUFA 40.26 ± 0.74 41.58 ± 0.36  

n-3 21.59 ± 0.95 22.49 ± 0.48  

n-6 18.67 ± 0.24 19.10 ± 0.34  

n-3/n-6 1.16 ± 0.06 1.18 ± 0.04  

Abbreviations: SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids. *p < 0.05; **p < 0.001. 

3.5. Liver Antioxidant SOD, CAT Activity 

No significant differences were detected in the enzymatic antioxidant activity in the liver of fish 

analyzed in this study (Table 8). Antioxidant enzymes are considered a primary defense line against 

the formation of toxic oxygen reactive species (ROS), using reactive species as substrates, thus 

performing direct detoxification [40]. Particularly, catalase (CAT, EC 1.11.1.6) is a ubiquitous 

antioxidant enzyme, present in most aerobic cells that destroys hydrogen peroxide to molecular 

oxygen and water, whether superoxide anion radical are converted to hydrogen peroxide and 

molecular oxygen by superoxide dismutase (SOD, EC 1.15.1.1) [41]. These enzymes were previously 

detected in several fish tissues, such as liver, kidney, gills, muscle, blood [42], [43]. Several authors 

found that the activity of these enzymes varies in function of fish age [44], maturation stage [45], diet 

type [46], and some environmental factors, such as metabolic intensity and water temperature [47]. 

Rueda-Jasso et al. [46], demonstrated that high lipid dietary content induced an increase in the 

activity of CAT and SOD in liver. The same authors showed that the type of dietary starch also 

influences the level of the two enzymes since it affects the susceptibility of fish to oxidation. In the 

present study, no difference was observed between CAT and SOD activity in liver of A. baerii 

fingerlings fed with the control (CT) or the microalgae-supplemented (SC 10) diets. It was expected 

that fish fed with different diets managed the oxidative stress in different ways. This fact was 

previously confirmed when comparing high-lipid with low-lipid diets [46]. However, in this study, 

no difference in antioxidant activity in liver of fish from the two groups was found since the two feed 

formulations were isoproteic and isolipidic. Moreover, it is well known that another factor 

contributing to the oxidative status in fish is the dietary content of polyunsaturated fatty acids 

(PUFA) which are susceptible to peroxidation in the diets and when them are ingested and 

metabolized by fish [48]. In this study CT and the SC 10 diets did not show any significant difference 

in their fatty acid profile (Table 4) and, specifically, in their content in PUFA on the total of fatty acids 

was similar (42.78 and 42.63% in CT and SC 10, respectively). These results support the hypothesis 

that the two diets were comparable even when considering the antioxidant response induced in 

fingerlings of A. baerii. The microalgae biomass included in the experimental diet did not produce 

remarkable changes in the overall fatty acid composition of the diet and did not decrease the 

antioxidant activity against the toxic ROS in fish. 
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Table 8. Catalase (CAT) and superoxide dismutase (SOD) activity in liver of A. baerii fingerlings fed 

the test diets over 40 days. 

Diet  
CAT Activity  

(nmol min−1 100 mg−1) * 

SOD Activity 

(U 100 mg−1) ** 

CT 3.63 ± 0.32 0.188 ± 0.18 

SC 10 4.10 ± 0.58 0.154 ± 0.040 

*= nmol of formaldehyde formed by CAT per minute in 100 mg of liver; **= 1U is defined as the 

amount of SOD needed to exhibit 50% of dismutation of the superoxide radical in 100 mg of liver. 

3.6. Digestive Enzyme Activity 

Enzyme activities in proximal and distal intestine extracts of Siberian sturgeon specimens fed 

the experimental diets are shown in Table 9. The inclusion of microalgae significantly increased total 

proteolytic activity in proximal and distal intestine when compared to fish fed on a CT diet. An 

increment in digestive proteases could result in a better bioavailability of amino acids due to the 

hydrolysis of dietary protein by these enzymes. Trypsin activity level was similar between both 

groups, while chymotrypsin was significantly lower in the distal segment of fish fed SC 10 diet. 

Alkaline phosphatase and leucine aminopeptidase are brush border enzymes that play a relevant role 

in the final stages of digestive processes of dietary protein, allowing the absorption or transport of 

amino acids by enterocytes [49]. Regarding leucine aminopeptidase activity, fish fed on SC 10 showed 

significantly lower activity values, which might reflect a reduced capacity for delivering amino acids 

from the dietary protein. However, that eventual delay in the delivery rate of free amino acids from 

dietary protein as a consequence of reduced aminopeptidase activities seems to be compensated by 

efficient uptake and transport processes through the intestinal mucosa [9,49]. In this regard, alkaline 

phosphatase activity measured in both groups was similar and reflected the existence of efficient 

absorptive processes.  

The most dominant enzyme of the intestinal brush border is the alkaline phosphatase and is 

commonly used as general marker of nutrient absorption [50]. In addition, the observed increase of 

total proteolytic activity level might contribute to compensate the lower leucine aminopeptidase 

activity in SC 10 group yielding similar growth performance in both groups, which confirmed 

adequate utilization of dietary nutrients despite the differences found in those digestive enzymes. 

Table 9. Digestive enzyme activity (U g tissue−1) in proximal (PI) and distal (DI) intestine extracts of 

A. baerii fingerlings fed the test diets for 40 days. 

Intestin

e Tract 
Diet  

Total Alkaline 

Protease 
Trypsin Chymotrypsin 

Leucine 

Aminopeptidase 

Alkaline 

Phosphatase 

PI CT 618.8 ± 27.9 a 1.66 ± 0.31  8.31 ± 0.64 0.16 ± 0.01 b 15.8 ± 1.2 

PI  SC 10 713.9 ± 55.3 b 1.90 ± 0.04 8.21 ± 0.63 0.10 ± 0.01 a 15.1 ± 1.7 

DI CT 673.8 ± 41.9 a 2.17 ± 0.20 9.85 ± 0.04 b 0.27 ± 0.04 b 13.35 ± 1.67 

DI  SC 10 771.5 ± 25.7 b 2.01 ± 0.38 7.18 ± 0.26 a 0.11 ± 0.02 a 11.84 ± 1.11 

Values are mean ± SE of triplicate determination. Values in the same column with different lowercase 

indicate significant difference (p < 0.05) (n = 6). 

3.7. Analysis of Intestinal Mucosa 

Visual analysis of SEM and TEM images confirmed that none of microalgae-fed fish showed 

structural damage in microvilli compared to control fish (Figures 3 and 4); the existence of 

detrimental changes could hinder its function as nutrient absorption surface and natural barrier 

against pathogenic bacteria. Intestinal mucosa showed numerous mucous cells as well as columnar 

ciliated and non-ciliated cells.  
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Figure 3. Comparative SEM micrographs from the intestine of A. baerii fingerlings fed the test diets 

for 40 days. (a) Proximal intestine (PI) of fish fed control (CT) diet; (b) Distal intestine (DI) of fish fed 

control (CT) diet; (c) Proximal intestine (PI) of fish fed microalgae-supplemented (SC 10) diet; (d) 

Distal intestine (DI) of fish fed microalgae-supplemented (SC 10) diet. In this species, ciliated cells 

(black arrows) can be seen alternating with goblet (white arrows) and columnar absorptive cells. SEM 

bar scale: 20 μm. 

 

Figure 4. Comparative TEM micrographs detailing microvilli from the intestine of A. baerii fingerlings 

fed the test diets for 40 days. (a) Proximal intestine (PI) of fish fed control (CT) diet; (b) Distal intestine 

(DI) of fish fed control (CT) diet; (c) Proximal intestine (PI) of fish fed microalgae-supplemented (SC 
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10) diet; (d) Distal intestine (DI) of fish fed microalgae-supplemented (SC 10) diet. TEM bar scale: 1 

μm. 

Morphometric analysis of TEM images showed that specimens fed on microalgae-supplemented 

aquafeeds presented shorter and wider microvilli than fish fed the control diet, which yielded higher 

apical absorption surface in mucosa of distal intestine (Table 10). This analysis is a useful tool for 

assessing how changes in the diet may influence the structure and morphology of intestinal mucosa 

as it has been described that the use of vegetable proteins causes alterations in gut morphology of 

fish with detrimental consequences on the digestive physiology and absorption capacity [51,52]. In 

the present study, fish fed both experimental diets showed a healthy intestinal mucosa, which agrees 

with the growth performance values obtained. The results obtained showed that the dietary inclusion 

of microalgae from a biorefinery does not exert negative effects on intestinal mucosa since the 

absorption surface in enterocytes remains unaffected, and even significantly increased in the distal 

intestine. 

Table 10. Microvilli morphology in proximal (PI) and distal (DI) intestine of A. baerii fingerlings fed 

the test diets for 40 days. 

Intestine 

Tract  
 Diet 

Microvilli 

Length  

(µm) 

Microvilli Diameter  

(µm) 
Apical Absorption Surface per µm2 

PI CT 2.40 ± 0.02 b 0.10 ± 0.02 65.42 ± 0.67 

PI SC 10 2.32 ± 0.02 a 0.12 ± 0.02 66.09 ± 0.50 

DI CT 3.48 ± 0.03 b 0.11 ± 0.01 65.87 ± 0.63 a 

DI SC 10 2.97 ± 0.02 a 0.12 ± 0.02 74.42 ± 0.52 b 

Values are mean ± SE of triplicate determination. Values in the same column with different lowercase 

indicate significant difference (p < 0.05) (n = 6). 

4. Conclusions 

Few studies have been published on microalgae-derived feed ingredients in Acipenserids diet 

and no data are available on the use of biomass from biorefineries in aquafeed for this species. This 

is the first study on this topic. The data observed confirm the potential use of the microalgae blend 

Scenedesmus-Chroococcus, cultivated on digestate, for feeding Siberian sturgeon fingerlings. These 

results suggest that microalgal biomass obtained from a biorefinery using digestate liquid fraction as 

source of nutrients, could be a valuable alternative ingredient for ensuring a diet fulfilling the nutrient 

requirements of Siberian sturgeon, ensuring an adequate growth performance and fillet quality. 

Experimental diet supplemented with these microalgae fulfils the nutrient requirements for ensuring 

proper growth performance, adequate fillet quality and a healthy gastrointestinal tract in fish. 

However, the presence of some C. perfrigens spores in biomass suggests the need for further studies 

on pre-treatment of centrate, for instance, by thermal energy or membrane-based technology such as 

ultra filtration combined with reverse osmosis, to improve the microbiological quality of biomass 

resulting from the biorefinery.  

Furthermore, in order to guarantee the ingredient composition of experimental diets, it would 

be interesting to monitor the biomass chemical composition of algae for at least one year, over the 

four seasons, so that it would be possible to check if some differences in the macronutrient 

composition of algae could occur despite the standardization of the cultivation protocol. 
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